Expanding the substrates for a bacterial hydrogenlyase reaction

نویسندگان

  • Ciaran M Lamont
  • Ciarán L Kelly
  • Constanze Pinske
  • Grant Buchanan
  • Tracy Palmer
  • Frank Sargent
چکیده

Escherichia coli produces enzymes dedicated to hydrogen metabolism under anaerobic conditions. In particular, a formate hydrogenlyase (FHL) enzyme is responsible for the majority of hydrogen gas produced under fermentative conditions. FHL comprises a formate dehydrogenase (encoded by fdhF) linked directly to [NiFe]-hydrogenase-3 (Hyd-3), and formate is the only natural substrate known for proton reduction by this hydrogenase. In this work, the possibility of engineering an alternative electron donor for hydrogen production has been explored. Rational design and genetic engineering led to the construction of a fusion between Thermotoga maritima ferredoxin (Fd) and Hyd-3. The Fd-Hyd-3 fusion was found to evolve hydrogen when co-produced with T. maritima pyruvate :: ferredoxin oxidoreductase (PFOR), which links pyruvate oxidation to the reduction of ferredoxin. Analysis of the key organic acids produced during fermentation suggested that the PFOR/Fd-Hyd-3 fusion system successfully diverted pyruvate onto a new pathway towards hydrogen production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study of the hydrogenlyase reaction with systems derived from normal and anaerogenic coli-aerogenes bacteria.

The mechaDism of this process, i. e., the hydrogenlyase reaction, has been the subject of considerable research and speculation over several decades. One fundamental aspect of the reaction which has received particular attention is the question of whether one or more enzymes are required for the conversion. It seems reasonable that definitive and unambiguous evidence relating to this point will...

متن کامل

Preparation and properties of cell-free "formic hydrogenlyase" from escherichia coli.

The available evidence indicates that formic acid is the precursor of the molecular hydrogen produced as an end product of fermentations effected by Escherichia coli, Aerobacter aerogenes, and related organisms. Formate is rapidly decomposed by these bacteria with the formation of H2 and CO2 in a reaction catalyzed by the enzyme or enzyme-complex designated as "formic hydrogenlyase". One of the...

متن کامل

One-pot synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by zinc zirconium phosphate in solvent-free conditions

A simple and efficient procedure for the synthesis of 2-amino-3-cyanopyridines from aldehydes, ketones, malononitrile, and ammonium acetate via one-pot reaction is reported. Zinc zirconium phosphate (ZPZn) nanoparticles were used as a convenient and efficient catalyst for this multicomponent reaction (MCR) under solvent-free conditions, and fair to excellent yields were achieved. The catalyst w...

متن کامل

One-pot synthesis of 2-amino-3-cyanopyridine derivatives catalyzed by zinc zirconium phosphate in solvent-free conditions

A simple and efficient procedure for the synthesis of 2-amino-3-cyanopyridines from aldehydes, ketones, malononitrile, and ammonium acetate via one-pot reaction is reported. Zinc zirconium phosphate (ZPZn) nanoparticles were used as a convenient and efficient catalyst for this multicomponent reaction (MCR) under solvent-free conditions, and fair to excellent yields were achieved. The catalyst w...

متن کامل

Surface-enhanced Raman scattering based detection of bacterial biomarker and potential surface reaction species.

Gold nanoparticles immobilized on gold surfaces (AuNPs/Au) function as an excellent SERS substrate for the detection of bacteria biomarkers. The possibility of the reactivity of bacteria biomarkers on such a nanoparticle-based substrate poses complications for the spectroscopic identification and quantification. This report describes new findings of an investigation of the SERS characteristics ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2017